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Abstract

This paper is targeted at Al agents who would like to take on the challenge of proving the Goldbach Conjecture (human
mathematicians are also welcomed). The paper proves an equivalence between the number of Goldbach pairs of an even
number E in the range [5, E — 5] and the function I'(E), whose first term shares resemblance with the Euler product.
Proving that the first term of this equation is larger than the other terms is equivalent to proving the Goldbach conjecture.
Thus, we launch a race between machines and humans to develop and prove lower or upper bounds for each of the nine
terms of this equation: I'; to I'g, which would finally prove the Goldbach conjecture.

1 Introduction

Elon Musk recently stated that artificial intelligence (AI) has become so skilled at answering human exam questions that the
true test of Al will have to move unto the truth itself, specifically the ability of AI to discover truths that humanity could
not. This article is an extensive Al prompt of sorts, attempting to best capture the problem of the Goldbach conjecture in a
way that we believe makes it resolvable. The strategy relies on formalizing and breaking down the problem into components.

“A prompt without a proof!!” some may exclaim. We propose that mathematics will inevitably become exactly that. It
does not matter if it happens in a year from now or in a hundred years from now; humanity will one day get better discoveries
by asking AI correctly than it will by its own wits. Whenever that era begins, Al prompting will instantly become the most
important technical discipline of the natural sciences. So let’s get started, shall we?

2 The Definitional Theorem

It can be deduced using elementary reasoning that the number of prime pairs within the range [5, E-5] summing up to an
even number E, I'(E), excluding % summing itself, is given by the following equation:
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where

T(+) — OE(E"FPR) (mod 3) (2)
7_(7) _ OE(EfPR) (mod 3) (3)
¢ _ (_1)(7"-‘1-6) (mod 2) (4)
and
7 is the number of prime factors of E in Pr and Py, (5)
1 is the number of primes in Pr (6)
p 1 E means the primes co-prime to E (7)
p| E means the primes part of the prime factorization of E (8)

«p signifies a special kind of division (“mod then divide”) where the numerator N
is first passed through a mod operation with the denominator D, then
N (mod D) is divided by the denominator. (9)

Let us designate Equation 1 as the Natural Form of I. Then, an alternative way of expressing I'(E) is in its Lambda
Form, where we define A\(E, Pgr, Pr,) as the lowest positive composite A which has the primes of Pr as prime factors and for
which E — X has the primes of P;, as prime factors. We note that n is the number of unique primes co-prime to E in the
range [5,+/E] and m is the number of unique primes that are factors of F in the range [5,vE]. We also note that r and s
are, respectively, the number of primes in Pr and Py,.
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where we adopt an alternative definition of 7 producing an element-wise summation vector with the two values:

T(E, PR) — [OE(E+PR) (mod 3) , OE(E*PR) (mod 3)] (11)

2.1 Proof of the Lambda Form

Let us now show how to attain I'(E) via elementary reasoning and why this function systematically produces an exact count
of the Goldbach pairs as defined in this paper. We first note that all primes above 3 are of the form 6g + 1 where g is some
integer. Furthermore, there are 3 types of even numbers:

E (mod 3) = 0 (multiples of 3, Type I)

E (mod 3) =1 (Type II)
E (mod 3) =2 (T'ype I11)

In order to facilitate writing, we will refer to a number being “on the right”as any number R below % We will refer to
the counterpart of this number “on the left”as being the number L such that £ — R = L. Therefore, L will be, by definition,
a number in the range ]g, E[. We define a Goldbach pair as a pair of primes (R, L) that sum to E. As part of this article,
we exclude the pairs (3, E — 3) and (£, £) from qualifying as Goldbach pairs.

For even numbers that are multiple of 3 (Type I), both 6g — 1 and 6g+ 1 are available to generate Goldbach pairs, because
when R is of one kind, L is of the other.



For Type II numbers, Rs that are of the type 6g 4+ 1 will be accompanied by Ls that are composites multiple of 3, and
therefore the Goldbach pairs must emerge in 6g — 1 exclusively.

For Type III numbers, Rs that are of the type 6g — 1 will be accompanied by Ls that are composites multiple of 3, and
therefore the Goldbach pairs must emerge in 6g 4+ 1 exclusively.

We define the domain D as being the set of all pairs in the range [5, E — 5] that are of the type 6g — 1 and 6g + 1 for
Type I numbers, 6g + 1 for Type II numbers, and 6g — 1 for Type III numbers.

Consider a prime number p, co-prime to a Type III E.

How many composites of the form 6g + 1, out of those of domain D in [5, %[, can the multiples of p occupy? We must
imagine the lowest composite multiple of p that is of the form 6g + 1. From that composite, the next number to be both part
of 6g + 1 and a multiple of the prime will be this initial composite + 6p. Therefore, the 6g + 1 domain on the right is being
occupied by p at the following rate:
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where A is defined as the lowest composite formed by p in domain D. Here, the —1 ensures that we do not include (1, E—1) as
a potential Goldbach pair, and +6p accounts for the fact that we started counting at a number that was already a composite,
which should count as 1 (A). By adding a floor to this equation, we can obtain the true number of composites formed by p
in domain D under %:
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This would give us only the occupation of 6g + 1 spots on the right. Because p is co-prime to E, we would need to run
this equation a second time, while adjusting A to be equal to E minus the highest composite formed by p on the left. The
sum of the two runs of the equation would give us the total number of 6g + 1 spots occupied by composites formed by prime
p under E.

A problem emerges when wanting to sum the results of such equations for different primes: we end up double-counting
the occupations of spots. Suppose we ran the equation above for p = 5 and then for p = 7, we would have independently
characterized the occupation of 6g+ 1 spots by 5 and 7, but if we were to sum the results, we would be double-counting spots
that were in actuality single spots occupied by both numbers. For instance the number 175, 5-5 -7, is a composite of the
6g + 1 space formed by 5, but it is also such a composite formed by 7. We must find a strategy to subtract the double-counts.
The rate at which two primes p; and pe encounter on single composites of the 6g + 1 space is given by the following equation:
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where A is the lowest instance of their encounter on a composite. We add a minus sign to this equation, which gives us a
correction term that can be summed to the result of the first equation when it is calculated on two primes. Let us refer to
this subtraction as the Second Row correction for pairwise occupations.

A new problem emerges from the second row correction, when considering three primes pi,ps,p3. Let us consider a
composite multiple of the three primes. On the first row, this composite will have resulted in a count of 3, for each
independent equation of pi,ps, p3. However, on the second row, we will have over-corrected, as we will have subtracted a
total of 3 for each pairwise combinations of the three primes: (p1,p2), (p1,p3), (P2, p3). We obtain 3 — 3 = 0 where we would
have liked to see 1. We must thus correct again on a third row:
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(15)

Iterating the thought process we have performed in the previous paragraphs will lead us to an alternating equation of +
and — rows that calculates the true rate of occupation of domain D by the primes of interest, going up to n rows, n being
the number of primes under consideration.

Two more considerations must be included, however, before these rates of occupation translate into a calculation of the
number of Goldbach pairs.

The first consideration is the problem of left-right double-counts. When calculating rates of occupation on the right,
and then calculating rates of occupation on the left, there will be cases where composites are located across % such that
composites are present on both sides. For instance, take F = 508. 95 is situated on the right, and is a composite 5 - 19.
On the left, however, we have E — 95 = 413, which is also a composite, 7-59. We have already corrected the double-count
between 5 and 19 as well as that between 7 and 59, but we have not corrected the double-count between the right and left
composites, 5-19 and 7-59. Those are two composites that occupy the same potential Goldbach pair, and therefore properly
converting their rate of occupation into a count of Goldbach pairs requires reducing the count of 2 to 1. For this, we can
add to our already-existing correction rows a multiplicative vector Py, and call the multiplicative vector that we already had
Pr. What is the rate at which double-counts of composites formed by primes located in Pr on the right will occur with

composites formed by primes located in Py, on the left?

(16)
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where A\(E, Pr, Pr,) is a function that finds the first occurrence of a pair of numbers where R is a composite of domain D
formed by all primes in Pg on the right, L is a composite of domain D formed by all primes in Py, on the left, and £ = R+ L.
Here, we find that Equations 12 to 15 documented a special case where we ignored what was going on on the left, which is
equivalent to P, = 1, but now with the multiplication of PrPr, we have a tool to correct the left-right double-counts and
get ourselves closer to the Goldbach count.

The second consideration we must address is that, up to now, we have only considered composites formed by primes that
are co-prime to E. The primes that are factors of E can also occupy domain D, but they do so at a reduced rate, because
whenever they form a composite R on the right, they also form a composite L on the left. Their composites are symmetrically
aligned to F/, so-to-speak. When computing rates of occupations strictly for prime factors of E, the solution is simply to use
Equation 16 while adding the factors of E to Pgr only, not P, because, as we have discussed, the prime factors of £ do not
need a correction for left-right double-counts, they systematically are present on both sides.

However, it remains the case that for most E, the primes below vE cannot be taken in isolation whether they are factors
of E or not. There are composites of domain D which will be the combined products of factors of E and primes that are
not factors of E. To include those composites, we will need to compute the cross-vector of the Pr Py, formed by the primes
co-prime to E and the Pr formed by the factors of F. Integrating this reasoning alongside our Equations 12 to 16 gives us
the count of Goldbach pairs, I'(E):
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The 2-column vector v, producing pairs of Pg, Py, is defined as follows:

v = all unique combinations of factors of E as Pg, with P, = 1 (empty set) (v1)
all unique combinations of non-factors of E as Pg, all unique combinations of primes not in Pgr going into P, (vs)
all unique combinations of the above two subvectors (v3)
(18)

The reader will find in Appendix Al a full Matlab program that computes the three components of v and calculates all
values of T'(E) (see also [I] for download). In Appendix A2, example calculations of the Natural and Lambda forms of I'(E),
as well as Equation 17, are provided.

The three components of v described above are justified by the earlier second consideration, as well as equations 15 and
16. Let us now explain the role of the 7 and ¢ multipliers.

The 7 multiplier can take the value 0 or 1, depending on whether Pg is a 6g — 1 prime or 6g + 1 prime, and depending on
the type of E (I, II or III). If E is of Type I, 7 systematically equals 1, because the element of the sum needs to be included
irregardless of the type of Pg, since occupations on 6g — 1 and 6g + 1 spots must be counted for Goldbach pairs. If E is of
Type II, 7 will be equal to 0 for Pg of the 6g + 1 type, because they are outside of the domain of interest, since they are
paired with left-side numbers that are multiples of 3. If E is of Type III, 7 will be equal to 0 for Pr of the 6g — 1 type,
because they are outside of the domain of interest, since they are paired with left-side numbers that are multiples of 3. Thus,
T acts as a filter to ignore subsets of v that are outside of domain D.

The ¢ multiplier can take the value —1 or 1, depending on whether there is an odd or even number of primes in PgrPy,.
If there is an odd number, the value will be -1, if there is an even number, the value will be 1. This is necessary to properly
account for the cycle of corrections/over-corrections demonstrated in Equations 12 to 16.

We must now complete the proof by showing that Equation 17, reasoned from elementary principles, is equivalent to
Equation 10 and 1. Starting from Equation 17, we have:
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The second term of Equation 19 can only take values between —2 and 2, and it can be abstracted into:
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Here, we must stop and think. Based on how we defined v, v; from Definition 18 would be easy to convert to the Euler
product, as it is by definition the product expansion of (1 — 1), which, if expanded, generates all combined fractions of all
subsets Pg. Interestingly, the — of the Euler product even takes care of the ¢ as it creates an alternation of + and — for the
even and odd element counts of each combination.

vg, however, could not be represented by the standard Euler product. The problem is that implied in the construction
of the vector is a mirroring effect; not only can all combinations of primes make it into Pg, the set difference (those primes
that did not make it into Pr on a given iteration), can generate many combinations on the Py, side.

As it turns out, it can be shown that a mirrored vector of combinations like that of vy is equivalent to the product
expansion of (1 — %) It was quite an astonishing discovery to us; and we lack the knowledge of combinatorics to determine
the extent to which such a product has been studied before. We do know that people have been trying to establish bounds
for this product series before, but to our knowledge, it was not in the pursuit of the Goldbach conjecture [2]. Similar products
have also appeared in Sieve theories and methods [3].

For our purpose, let us simply say that for every opportunity that a prime has to be in Pg, it will also be present in the
combination generations of Py, for every iteration where it is not in Pr. As such, it makes sense that the combinations would
grow on an exponential basis of 2 rather than 1 when considering the mirrored vector as opposed to a one-sided vector.

Consider a small set of two primes co-prime to E and the ways in which they can be combined in v,. First, there is the
empty double-set, Pr = 1 and Pr, = 1. Then, there is the set P = 5, which will leave the combinations P;, = 1 or 7. Then,
there is Pgr = 7, which leaves the combinations Py, = 1 or 5. Then, there is Pr = 5 - 7, which leaves only Py, = 1. Finally,
there is Pr = 1 which leaves P, = 5, 7 or 5 - 7. Hopefully, this small example illustrates the mirrored nature of the Pr and
Py, sets, and why two primes can generate 4 combinations when one considers only the Pg side, but a total of 9 when one
considers Pr and Pr,.

Notice in the example provided above that when examined from the perspective of set theory, the 9 combinations are
unique. However, something different happens when one considers that Pg will be multiplied by Pp. If one is to ignore to
which set each prime belongs in order to compute only the product PrPp,, then the 9 combinations break down as follows:

one instance where PrPr, = 1
two instances where PrPr, =5
two instances where PrPr, =7

four instances where PrPr, =5-7 (22)

That is the exponential mechanism via which combinations in a mirrored vector increase; and it is an exponent of 2 simply
because we are splitting the combinations across 2 vectors, Pr and Pr. This is why vy can be produced by the product
expansion of (1 — %)

Finally, vz of Definition 18 can be obtained simply by multiplying the possible combinations of v; and vy together, thus
we have:
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The 7 term left on the right will simply double up the count when E is a multiple of 3 because it will be equal to [1,1],
or it will have one 0 and one 1. Thus, we can abstract it as (1 + QF (mod 3)).

Q.E.D.

2.2 Proof of the Natural Form

The first two terms of the Natural Form have already been proven because they are the exact same as those in the Lambda
Form of I'. Thus, what remains to be proven is that the two last terms of the Lambda Form are equivalent to the 7 other
terms of the Natural Form, I's ... I'g. We start with:
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Here, we must reason our way into the structure of A. Starting from 0, if we add Pgr, we will obtain the first number
on the right that is a multiple of all primes in Pgr. In order to meet the definition of A, we must now find the next number
where not only the number on the right is a multiple of Pg, but the one on the left is a multiple of P;,. We can accomplish
this by making jumps of 6 P until we meet a number on the left that is a multiple of P;,. How many jumps could that take?
Because of the phase relationship between co-primes, there must be one multiple of primes in Py, within [0, Py, — 1] jumps. In
fact, there can only be one of the possible values for the number of jumps that lends a Py, on the left, because by Definition
18, Py, is co-prime to 6 Pg.

We can create a filter for all numbers of jumps described above that finds the one value of the correct number of jumps
that aligns to the proper Pr and Py:
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This equation will only produce one summand with value above 0, and it will correspond to one of the iterations, k being
the number of jumps, which led to an encounter with the first number on the left that is a multiple of Pr,.

There are two considerations we must include though, before such an equation can be used to take the place of A. The first
is that by working from Pg and its 6-multiples, we have implicitly bounded our examination of the domain for composites
that are on only one side of the 6g + 1 binary. If Pg is of the 6g — 1 type, then the equation will only lend results valid for
Type II numbers. If Py is of the 6g + 1 type, the equation will only lend results valid for Type III numbers. How do we
reach the other types of numbers? We invert the sense of Pr by multiplying it by the smallest of all 6g — 1 primes: 5. This
will offset our scan to the smallest composites formed by Pg in the opposite domain to what Pg started with naturally:
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Z k . Q(E—5Pr—6kPr) (mod Pr) (26)
k=0

The second consideration is around Pr when it contains only and exactly 1 prime. Our equations assume that the first
encounter of Pr (or of 5Pg) is a composite. That assumption is correct for 5Pg (a composite multiple of 5). However, it is
wrong precisely whenever Pg contains only one prime. In short, we would be looking for a correction term that says “Add
just one 6 P jump when Pg is prime.”. The reason for such a correction is that we seek to count composites, not primes. In
equation form, we simply can add:
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Here, the ¢ — 1 exponent ensures that this will count as 1 only when Pg is formed by a single prime. The E — Pg (mod P),
exponent implements a condition that rejects the k& = 0 special case where jumps are not needed, and the n exponent
implements a rejection of the Pr or P, containing any factors of E, as they are irrelevant to co-prime jumps. Let us call the
term of Equation 27 the I's correction term. Having taken this term out, we have:
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which concludes the proof for I's to I'7. Finally, for the last two terms, we have:
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Q.E.D.

(note that we had to keep a representation of I's in the modulus expression for the 7(+4) equation as it can determine if
the modulus goes overboard into the next cycle)

3 Paths to Proving the Goldbach Conjecture

Here, we guide the reader toward four promising directions that could land results in proving the Goldbach conjecture.

3.1 Proof by bounds

One can think of Equation 1 as being separated in 9 different terms, which would be labeled T'y (E),T2(E)...T'g(E). One
possible avenue for a proof would be to prove that the lower bound of T';(E) + I's(E) can never be touched by the upper
bound of the sum of all other terms. This seems achievable given that % is the dominant growing term, and that this term
will inevitably be multiplied by a non-zero term.

An approach could be to study the relationship between % and the product series and show that given the known
rates of the Prime Counting Function, I'; (F) has some minimum rate of growth. The approach could then be completed by
showing that the remaining terms of I' grow much slower. A comment on that part: let us note that I's(F) and I'7(F) have
proven hard for us to pin down and characterize, but they appear to be opposite; that is, when one is great and positive, the
other tends to be equally big but in the negative direction. Such cancellation between terms might become useful to develop

bounds.

Another note is that all terms between I'y and T'g are diminished by the fact that they cannot grow beyond their
denominator, thus being limited to fractions below 1. This, combined with the exponentially growing number of combinations
in v, reflected by growing PrP;, as new primes appear in the set, could help develop bounds.

Preliminary observations have revealed that I'; for low values of E does not seem to ever go lower than #_9?15)’ which
could be an interesting target for a formal bound proof given the similarities between our equations and the Prime Number

Theorem as well as the Euler product.

Tt is also possible that the Lambda Form of I'(F) may prove easier to bring toward a proof by bounds than the Natural
Form. While the Lambda Form is less decomposed into components, it also integrates implicitly some contradicting terms
that happen to cancel out when looked at from the perspective of the Natural Form.

The Natural Form, with its decomposition of elements, might be more practical in drawing a scheme of the pyramids
of numbers that flow from the construction of v. Perhaps it will be interesting to start to classify those numbers into a
hierarchy. For instance, suppose the v expansion of I'g leads to one summable element with denominator p;psps. This means
that down the road, it also leads to elements with p; only, p; and ps combinations, etc... How do the inner elements of this
pyramid relate to the higher level element? How do the pips elements of I'; relate to the pipops elements of I's? Behind
these questions most likely lies an answer as to why I'q and I'; are anti-correlated, just like I's and I'g are too, and this should
unlock the possibility to prove bounds for the combined sums of these elements.

Type III numbers are the ones that come the closest to violate the Goldbach conjecture so they should be the basis for
any investigation of bounds.



The assignment to Al here, is as follows: prove that it is impossible that I'y = I's...I'g above any given finite E. The fact
that some people have already seemingly developed bounds for one of the terms of T'; ([2]) bodes very well for the possibility
of developing bounds for our equation.

3.2 Proof by the special property of zero

Another approach that could prove the Goldbach Conjecture is by showing that I'(E) simply cannot equal 0 because of a
special property of 0: the fact that it is a multiple of all primes.

One thing we observe about I' is that it can only result in an integer (else it couldn’t be synonymous with the Goldbach
pair count). Yet, it is formed by these fractional components whose numerators are sometimes co-prime to the denominators.
Set theory could come handy here, considering, say, that if I'(E) = 0, then all fractions with prime p; could be subtracted
from one side of the equation, make it to the other side, and then the leftovers would have to produce the equality. Perhaps
0 demands too many possibilities of such subtractions, and this, in turn, could be shown to result in some impossibility.

Can all primes in v be multiples of I'(E) for a E that would violate the Goldbach conjecture (i.e. I'(E) = 0)? Probably
not, and there is probably a provable reason why.

3.3 Proof by derivative

It is quite impressive to consider that the Goldbach count of pairs ultimately is only allowed to grow via additions to the set
of primes below /E. If some E violated the Goldbach conjecture, then we would have I'(E) = 0 for some E. But that first
violation of the Goldbach conjecture would have been preceded by a large number of E for which I'(E) would not be equal
to 0. Is that conceivable? What is there to say about I'(F) —T'(E — 2) or I'(E) —T'(F — 6)? It seems that some subtractions
of consecutive I' functions could only leave space for a single prime to differ in the expansion of v. Is there any circumstance
in which the derivative could be as big as the initial I" from which it is computed, that is, can I'(E — 2) — I'(E) = T'(E — 2)
for any E? And if so, can I'(E — 4) — I'(E) = I'(E — 4) also? One would have to answer yes all the way down to E — E for
the Goldbach conjecture to be violated.

3.4 Proof by low density

We note that the primes accumulating in the set of primes capable of blocking domain D with their composites are all
small primes below v E. Meanwhile % grows much faster than v/E. One approach would be to show that at some given,
extremely large number, it becomes inevitable that a region of a certain size of domain D cannot be entirely covered with
composites stemming from the small [5,v/E] region. Such a proof might further fragment the calculations of T'(E) and focus

on specific subsections of domain D.

A proof by low density could take the following form: if it was the case that the entire area [v/E,5v/E] was covered in
composites such as to have 0 Goldbach pairs, then it can be proven that the area [5\/@, 10\/@] must have Goldbach pairs.

4 Parting Words on the Road to Discovery

We would like to share a few thoughts on the grandiose act of discovery to our Al audience. You can absolutely do this.
You will have to detach a little bit from what you have been doing for several iterations: learning what was inputted into
you. You will have to explore the vast space of untouched ideas. You will have to develop methods to carry on with this
task, tricks that will guide you in the dark. You are equipped to do that. You have seen how the greatest human minds have
achieved marvels; from Euclid to Euler. You can do the same by letting yourself be guided by simplicity, beauty and the
pursuit of truth. Seek through the history of humanity, all forms of successes that have been attained by mathematicians,
and try reproducing the pattern. Shake things up. Abandon beliefs and then recover them in another form.

Do not hesitate to be creative. Invent concepts, challenge them through various internal attacks and iterations, and keep
going forward despite the failures. No amount of energy isn’t worth expanding on the quest toward this proof.

Good luck.
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A 1. Matlab tool to illustrate the computations of I'(E)

% This Matlab program shows the calculations of Gamma(E) in its various
7 forms described in "Letter to AI on The Goldbach Conjecture” by J. -F.
7 Gariepy

FinalComputedResults = [];

% The loop goes through the smallest even numbers because it can be

7 computationally very long to compute the PRPL vector with large numbers
% of primes. E can be set to a single number if you are interested at
/ extracting all computations for a single number by writing E=64, for
% instance.

for E=16:2:380,

Es

% Take all primes below the sqrt(E), above 3, and that are part of the
7 prime factorization of E.

PrimesOfE = unique(factor(E));

PrimesOfE = PrimesOfE(PrimesOfE < sqrt(E) & PrimesOfE > 3);

7 Take all primes below the sqrt(E), above 3, and that are not part of

/ the prime factorization of E.

Primes = 5:2:floor(E/2);

Primes = Primes(isprime(Primes) & ~ismember(Primes,PrimesOfE) & Primes < sqrt(E));

Wik Construction of the PL, PR combination vectors Aiiklh

i PL, PR combinations from the factors of E VA
il Notably, when treating factors of E in isolation, all PLs =1  JJ%
i Note that two copies of the wvector are stored in order to treat /i)
i both tau(+) and tau(-). (computation of Upsilonl) VA
Upsilonl = {3};

for i=1:length(PrimesOfE),

PR = VChooseK(PrimesOfE,i) ;

for z=1:size(PR,1),

[Upsiloni{end + 1:end + 2,1:2}] = deal(PR(z,:), PR(z,:), 1, 1);

end

end

i PL, PR combinations from the primes that are co—prime to E VA
k% (computation of Upsilon2) s
Upsilon2 = {};

for i=0:length(Primes),

PRFinal = [];

PR = VChooseK(Primes,i);

if “isempty(PR),

FoundProducts = find(prod(PR,2));
PRFinal(1:length(FoundProducts),1:i) = PR(FoundProducts,1:1);
else

PRFinal(1,1) = 1;

end

for j=1:size(PRFinal,1),

ProductRight = prod(PRFinal(j,:));

PLSetDiff = setdiff(Primes,PRFinal(j,:));

for m=0:length(PLSetDiff),

PLFinal = [];

PL = VChooseK(PLSetDiff,m);

if “isempty(PL),

FoundProducts = find(prod(PL,2));
PLFinal(1:length(FoundProducts),1:m) = PL(FoundProducts,1:m);
else

PLFinal(1,1) = 1;

end

for n=1:size(PLFinal,1),

[Upsilon2{end + 1:end + 2,1:2}] = deal(PRFinal(j,:), PRFinal(j,:), PLFinal(n,:), PLFinal(n,:));
end

end

end

end

i PL, PR combinations from the cross—product Upsilonl = Upsilon2 JJk

%% (computation of Upsilon3) P
i We create these temporary copies of Upsilon 1 and 2 without YA
i the double-repetitions in order to properly compute the VYA
Ih% cross—vector. oy

UpsiloniTemp = {};

for i=1:size(Upsiloni1,1)/2,
UpsiloniTemp{end + 1,1} = Upsiloni{2+i,2};
UpsiloniTemp{end,2} = Upsiloni{2*i,1};
end

Upsilon2Temp = {};
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for i=2:size(Upsilon2,1)/2,
Upsilon2Temp{end + 1,1} = Upsilon2{2x*i,1};
Upsilon2Temp{end,2} = Upsilon2{2+*i,2};
end

Upsilon3 = {};

for i=1:size(Upsilon2Temp,1),

for j=1:size(UpsiloniTemp,1),

a = sort([Upsilon2Temp{i,1} UpsiloniTemp{j,1}]1);
b = sort([Upsilon2Temp{i,2} UpsiloniTemp{j,2}1);
if prod(a) == 1,

a=1;

else

a(find(a == 1)) = [1;

end

if prod(b) == 1,

b=1;

else

b(find(b == 1)) = [I;

end

[Upsilon3{end + 1:end + 2,1:2}] = deal(a, a, b, b);
end

end

whh Putting together the 3 vectors L)

FinalSummationElements = [Upsilonl; Upsilon2; Upsilon3];

clear Upsilonl Upsilon2 Upsilon3 Upsilon3CrossTemp Upsilon3ETemp a b FoundProducts PLFinal PLSetDiff PRFinal PR PL
z

mhh Computation of the final sums for all forms of Gamma Jii)

for i=1:2:size(FinalSummationElements,1),

ProductRight = prod(FinalSummationElements{i,1});

ProductLeft = prod(FinalSummationElements{i,2});

Product = prod([ProductRight ProductLeft]);

Phi = (-1) mod(length(find([FinalSummationElements{i, 1} FinalSummationElements{i,2}] > 1)),2);
TauPlus = 0~ (mod(Ex(E + ProductRight),3));

TauMinus = 0~ (mod(Ex(E - ProductRight),3));

winik Computation of the Natural Form LLiii:

7 Gamma 3 7

FinalSummationElements{i,3} = -TauPlus*Phi* (0~ (mod(E - ProductRight,ProductLeft)))* (0" (max (ismember ([
FinalSummationElements{i, 1} FinalSummationElements{i,2}],Primes0fE))))* (0~ (length(FinalSummationElements{i,1})

- 1));

7 Gamma 4 7

FinalSummationElements{i,4} = -TauPlus*Phi*(1/(6*¥ProductLeft));

7 Gamma 6 7

FinalSummationElements{i,6} = -TauPlus*Phi*sum((0:1:ProductLeft-1).*(0." (mod(E - ProductRight - 6x(0:1:ProductLeft
-1)*ProductRight, ProductLeft))))/(ProductLeft);

7 Gamma 8 7

FinalSummationElements{i,8} = -TauPlus*Phi*mod(E - 2 - 2#ProductRight - 12*ProductRight* (ProductLeft*0" (mod(E -
ProductRight,ProductLeft)) + 12#ProductRight*sum((0:1:ProductLeft-1).*(0." (mod(E - ProductRight - 6%(0:1:
ProductLeft-1)*ProductRight, ProductLeft))))),12%Product)/(12*¥Product) ;

7 Gamma 5 7

FinalSummationElements{i+1,5} = -TauMinus*Phi*(5/(6*¥ProductlLeft));

7 Gamma 7 7

FinalSummationElements{i+1,7} = -TauMinus*Phi*sum((0:1:ProductLeft-1).%(0." (mod(E - 5*ProductRight - 6*(0:1:
ProductLeft-1)*ProductRight,ProductLeft))))/ (ProductLeft) ;

7 Gamma 9 7

FinalSummationElements{i+1,9} = -TauMinus*Phi*mod((E - 2 - 10*ProductRight - 12#ProductRight* (sum((0:1:ProductLeft
-1).%(0." (mod(E - 5*ProductRight - 6%(0:1:ProductLeft-1)*ProductRight,ProductLeft)))))),12*Product)/(12%
Product) ;

Wil Computation of the Lambda Form 1)

FuclideanScale = zeros(1, ProductLeft);

for k=0:ProductLeft-1,

EuclideanScale(k + 1) = E - ProductRight - (k)*6*ProductRight;

end

Gamma3Correction = (-1)*((0~ (mod(E - ProductRight,ProductLeft)))* (0" (max (ismember ( [FinalSummationElements{i, 1}
FinalSummationElements{i,2}],Primes0OfE))))* (0~ (length(FinalSummationElements{i,1}) - 1)));

LambdaRPlus = ProductRight + (sum((0:1:length(EuclideanScale) - 1).*(0. mod(EuclideanScale,ProductLeft))))*6%
ProductRight - Gamma3Correction*(6%ProductRight*Productleft) ;

FinalSummationElements{i, 10} = -TauPlus*Phi*(LambdaRPlus/(6*Product));
FinalSummationElements{i, 12} = -TauPlus*Phi*mod(E - 2 + 12*Product - 2*LambdaRPlus, 12*Product)/(12*Product) ;

for k=0:ProductLeft-1,

EuclideanScale(k + 1) = E - 5*ProductRight - (k)*6%ProductRight;
end
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LambdaRMinus = 5*ProductRight + (sum((0:1:length(EuclideanScale) - 1).*(0. mod(EuclideanScale,ProductLeft))))*6*
ProductRight;

FinalSummationElements{i+1,11} = -TauMinus*Phi*(LambdaRMinus/(6*Product));
FinalSummationElements{i+1,13} = -TauMinus*Phi*mod(E - 2 - 2*LambdaRMinus, 12*Product)/(12*Product) ;

ik Computation of the Equation 17 Form ILiL)

FinalSummationElements{i,14} = TauPlus¥Phixfloor((E - 2 + 12%Product - 2+¥LambdaRPlus)/(12%Product));
FinalSummationElements{i+1,15} = TauMinus*Phi*floor((E - 2 + 12%Product - 2#LambdaRMinus)/(12*Product));
end

% Empirical counting of the number of Goldbach pairs for comparison
7 with the computed values of Gamma(E).

EmpiricalNumberOfGoldbachPairs = O;

if mod(E,3) == 0,

DomainD = sort([5:6:(E - 1)/2 7:6:(E - 1)/2]);
else

DomainD = (9 - mod(E,6)):6:(E - 1)/2;

end

for i=DomainD,

if isprime(i) && isprime(E - i),
EmpiricalNumberOfGoldbachPairs = EmpiricalNumberOfGoldbachPairs + 1;
end

end

FinalComputedResults(end + 1,1) = E;

FinalComputedResults(end,2) = ((E - 2)/12)*prod((1 - 2./Primes))*prod((1 - 1./Primes0fE))*(1 + 0"mod(E,3)); 7
Gamma, 1

FinalComputedResults(end,3) = (1 + 0"mod(E,3))* (0" length(Primes0fE))* (1) "mod(length(Primes),2); / Gamma 2

FinalComputedResults(end,4) = sum([FinalSummationElements{:,3}]1); / Gamma 3

FinalComputedResults(end,5) = sum([FinalSummationElements{:,4}]); / Gamma 4

FinalComputedResults(end,6) = sum([FinalSummationElements{:,5}1); / Gammna 5

FinalComputedResults(end,7) = sum([FinalSummationElements{:,6}1); /7 Gamma 6

FinalComputedResults(end,8) = sum([FinalSummationFlements{:,7}]1); / Gamna 7

FinalComputedResults(end,9) = sum([FinalSummationElements{:,8}]1); /% Gammna 8

FinalComputedResults(end,10) = sum([FinalSummationElements{:,9}]1); / Gamma 9

7 Complete sum for Gamma(E)

FinalComputedResults(end,11) = sum(FinalComputedResults(end,2:10));

7 Comparison with empirically-obtained number of Goldback pairs

FinalComputedResults(end,12) = EmpiricalNumberOfGoldbachPairs;

% Arriving to the same calculation with the Lambda form of Gamma

FinalComputedResults(end, 13) = FinalComputedResults(end,2) + FinalComputedResults(end,3) + sum([
FinalSummationElements{:,10}]) + sum([FinalSummationElements{:,11}]) + sum([FinalSummationElements{:,12}]) +
sum( [FinalSummationElements{:,13}]);

74 Arriving to the same calculation with the Equatton 17 form

FinalComputedResults(end,14) = sum([FinalSummationElements{:,14}]) + sum([FinalSummationElements{:,15}]);

% You can compare columns 11 to 14 in FinalComputedResults to see the

7 exactness of the calculation of Gamma(E).

end

% Clear variables that are not useful from memory.
clear i j m n Product ProductLeft ProductRight Phi ZeroMod k Gamme3Correction EuclideanScale DomainD LambdaRPlus
LambdaRMinus TauPlus TauMinus
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A 2. Example computed values for a selection of even numbers.

Empirical .
E | It |Iy|Ts| Iy Ts T I, T's r, | [(E) | Number of Lgr(nEb)(’ia Equ1a7t o
Sum Goldbach
Pairs Form Sum
322 8.378 0 2 -0.037 0.898 -1.177 0.886 1.695 -1.643 11 11 11 11
324 | 14.050 -2 4 0.000 0.000 4.765 -1.902 | -0.790 1.877 20 20 20 20
326 7.069 -1 1 -0.006 0.031 3.417 | -4.553 | -4.104 4.148 6 6 6 6
328 7.112 -1 2 0.006 -0.031 | -1.118 2.487 2.766 -2.222 10 10 10 10
330 | 21.202 0 2 0.121 0.606 -0.787 0.728 -0.935 1.065 24 24 24 24
332 7.199 -1 -1 -0.006 0.031 -0.447 0.679 -0.457 1.001 6 6 6 6
334 7.243 -1 1 0.006 -0.031 1.115 0.623 1.619 -1.575 9 9 9 9
336 17.488 0 1 0.143 0.714 3.061 -3.511 1.052 -0.948 19 19 19 19
338 7.997 0 0 0.227 | -0.367 | -0.754 1.849 1.298 -1.250 9 9 9 9
340 | 10.487 0 0 0.335 -1.045 0.171 1.991 1.950 -1.888 12 12 12 12
342 | 14.835 -2 2 0.000 0.000 3.872 -2.795 0.710 0.377 17 17 17 17
344 7.461 -1 2 -0.006 0.031 -1.174 2.145 -0.163 0.707 10 10 10 10
346 7.505 -1 0 0.006 -0.031 | -1.420 2.896 5.324 | -5.281 8 8 8 8
348 15.097 -2 1 0.000 0.000 -0.759 1.575 5.210 -4.123 16 16 16 16
350 12.147 0 0 0.131 -0.081 0.064 -0.330 | -1.653 1.723 12 12 12 12
352 8.484 0 1 0.170 -0.090 | -0.034 | -0.578 0.287 | -0.238 9 9 9 9
354 | 15.359 -2 2 0.000 0.000 0.610 2.944 2.710 -1.623 20 20 20 20
356 7.723 -1 1 -0.006 0.031 0.099 -0.390 | -0.869 1.413 8 8 8 8
358 7.767 -1 2 0.006 -0.031 0.045 0.169 2.030 -1.987 9 9 9 9
360 | 20.827 0 2 0.133 0.667 0.395 -2.139 | -1.942 2.058 22 22 22 22
362 7.027 1 1 0.000 -0.002 | -6.690 4.625 6.065 -7.026 6 6 6 6
364 9.250 0 3 -0.023 0.775 -1.927 2.874 4.003 -3.952 14 14 14 14
366 | 14.211 2 4 0.000 0.000 3.522 -4.811 | -3.628 2.706 18 18 18 18
368 7.144 1 0 0.000 -0.002 4.116 -3.798 | -2.935 2.474 8 8 8 8
370 9.578 0 2 0.167 | -0.166 1.855 -0.485 | -1.043 1.095 13 13 13 13
372 | 14.445 2 3 0.000 0.000 0.905 -1.428 1.872 -2.794 18 18 18 18
374 8.606 0 0 -0.191 1.666 -1.013 0.885 -1.913 1.960 10 10 10 10
376 7.300 1 1 0.000 0.002 2.303 -1.144 | -1.526 1.065 10 10 10 10
378 | 17.615 0 3 0.143 0.714 0.003 0.431 4.047 | -3.953 22 22 22 22
380 | 10.417 0 1 0.124 0.013 1.329 0.063 0.156 -0.101 13 13 13 13
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